Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
J Am Chem Soc ; 146(15): 10478-10488, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578196

RESUMO

During biomedical applications, nanozymes, exhibiting enzyme-like characteristics, inevitably come into contact with biological fluids in living systems, leading to the formation of a protein corona on their surface. Although it is acknowledged that molecular adsorption can influence the catalytic activity of nanozymes, there is a dearth of understanding regarding the impact of the protein corona on nanozyme activity and its determinant factors. In order to address this gap, we employed the AuNR@Pt@PDDAC [PDDAC, poly(diallyldimethylammonium chloride)] nanorod (NR) as a model nanozyme with multiple activities, including peroxidase, oxidase, and catalase-mimetic activities, to investigate the inhibitory effects of the protein corona on the catalytic activity. After the identification of major components in the plasma protein corona on the NR, we observed that spherical proteins and fibrous proteins induced distinct inhibitory effects on the catalytic activity of nanozymes. To elucidate the underlying mechanism, we uncovered that the adsorbed proteins assembled on the surface of the nanozymes, forming protein networks (PNs). Notably, the PNs derived from fibrous proteins exhibited a screen mesh-like structure with smaller pore sizes compared to those formed by spherical proteins. This structural disparity resulted in a reduced efficiency for the permeation of substrate molecules, leading to a more robust inhibition in activity. These findings underscore the significance of the protein shape as a crucial factor influencing nanozyme activity. This revelation provides valuable insights for the rational design and application of nanozymes in the biomedical fields.


Assuntos
Nanoestruturas , Coroa de Proteína , Escleroproteínas , Peroxidase , Adsorção , Corantes , Catálise
2.
J Orthop Surg Res ; 19(1): 158, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429844

RESUMO

BACKGROUND: Osteoarthritis (OA) is a joint disease characterized by inflammation and progressive cartilage degradation. Chondrocyte apoptosis is the most common pathological feature of OA. Interleukin-1ß (IL-1ß), a major inflammatory cytokine that promotes cartilage degradation in OA, often stimulates primary human chondrocytes in vitro to establish an in vitro OA model. Moreover, IL-1ß is involved in OA pathogenesis by stimulating the phosphoinositide-3-kinase (PI3K)/Akt and mitogen-activated protein kinases pathways. The G-protein-coupled receptor, cc chemokine receptor 10 (CCR10), plays a vital role in the occurrence and development of various malignant tumors. However, the mechanism underlying the role of CCR10 in the pathogenesis of OA remains unclear. We aimed to evaluate the protective effect of CCR10 on IL-1ß-stimulated CHON-001 cells and elucidate the underlying mechanism. METHODS: The CHON-001 cells were transfected with a control small interfering RNA (siRNA) or CCR10-siRNA for 24 h, and stimulated with 10 ng/mL IL-1ß for 12 h to construct an OA model in vitro. The levels of CCR10, cleaved-caspase-3, MMP-3, MMP-13, Collagen II, Aggrecan, p-PI3K, PI3K, p-Akt, Akt, phosphorylated-mammalian target of rapamycin (p-mTOR), and mTOR were detected using quantitative reverse transcription polymerase chain reaction and western blotting. Viability, cytotoxicity, and apoptosis of CHON-001 cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, lactate dehydrogenase assay (LDH), and flow cytometry analysis, respectively. Inflammatory cytokines (TNF-α, IL-6, and IL-8) were assessed using enzyme-linked immunosorbent assay. RESULTS: Level of CCR10 was substantially higher in the IL-1ß-stimulated CHON-001 cells than that in the control group, whereas CCR10 was down-regulated in the CCR10-siRNA transfected CHON-001 cells compared to that in the control-siRNA group. Notably, CCR10 inhibition alleviated IL-1ß-induced inflammatory injury in the CHON-001 cells, as verified by enhanced cell viability, inhibited LDH release, reduced apoptotic cells, and cleaved-caspase-3 expression. Meanwhile, IL-1ß induced the release of tumor necrosis factor alpha, IL-6, and IL-8, increase of MMP-3 and MMP-13, and decrease of Collagen II and Aggrecan in the CHON-001 cells, which were reversed by CCR10-siRNA. However, these effects were reversed upon PI3K agonist 740Y-P treatment. Further, IL-1ß-induced PI3K/Akt/mTOR signaling pathway activation was inhibited by CCR10-siRNA, which was increased by 740Y-P treatment. CONCLUSION: Inhibition of CCR10 alleviates IL-1ß-induced chondrocytes injury via PI3K/Akt/mTOR pathway inhibition, suggesting that CCR10 might be a promising target for novel OA therapeutic strategies.


Assuntos
Osteoartrite , Fragmentos de Peptídeos , Fosfatidilinositol 3-Quinase , Receptores do Fator de Crescimento Derivado de Plaquetas , Humanos , Agrecanas , Caspase 3 , Colágeno , Citocinas , Interleucina-6 , Interleucina-8 , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 3 da Matriz , Osteoartrite/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CCR10 , RNA Interferente Pequeno , Serina-Treonina Quinases TOR
3.
J Pharm Biomed Anal ; 243: 116112, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513502

RESUMO

The therapeutic effects of Chinese herbal compounds are often achieved through the synergistic interactions of multiple ingredients. However, current research predominantly focuses on individual ingredients, neglecting the holistic nature of Chinese herbal compounds. This study proposes a novel strategy to elucidate the pharmacodynamic material basis of Chinese herbal compounds based on their multi-components (components named 'ZuFen' in China, it refers to multiple ingredients with similar chemical structures) composition, using the Xian-Ling-Gu-Bao (XLGB) capsule as a case study. Cheminformatics-based components partitioning was conducted after sourcing ingredients from various databases, resulting in a total of 856 ingredients which were categorized into nine major components. Furthermore, the pharmacodynamic ingredients of XLGB capsule were determined by analyzing the ingredients that were absorbed into the bloodstream. Through a combination of these ingredients and screening for absorption, the Dipsacus asper saponin components, Psoralea corylifolia coumarin components, and Epimedium flavonoid polyglycosides components were isolated. The anti-osteoporosis efficacy of these components were evaluated in zebrafish, demonstrating their capability to reverse mineralization reduction caused by prednisolone. These findings further support the idea that these components serve as the material basis for the pharmacological efficacy of XLGB capsule. This study provides a novel systematic strategy for discovering the pharmacodynamic material basis of the efficacy of Chinese herbal compounds based on a 'multi-components' perspective.


Assuntos
Medicamentos de Ervas Chinesas , Osteoporose , Saponinas , Animais , Peixe-Zebra , Medicamentos de Ervas Chinesas/química , Flavonoides , Osteoporose/tratamento farmacológico , Cromatografia Líquida de Alta Pressão/métodos
4.
Int J Nanomedicine ; 18: 7335-7358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084126

RESUMO

Purpose: Asperosaponin VI (ASP VI) as an active ingredient of Dipsacus asperoides, which has a wide range of biological and pharmacological activity. However, its development and application are restricted due to the poor gastrointestinal permeability and oral bioavailability. This investigation aims to reveal the influence of the self-assembled structure by the interaction between ASP VI and endogenous components NaTC and/or DOPC in the gastrointestinal environment on its biopharmaceutical properties, and novelty elucidated the molecular mechanism for the formation of self-assembled nanomicelles. Methods: This change in phase state in gastrointestinal fluids is characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). UPLC-Q-TOF-MS was used to analyze the composition of phase components and the exposure of nanomicelles in vivo. Molecular dynamics simulation (MDS) was applied to preliminarily elucidate the self-assembly mechanism of ASP VI in the gastrointestinal environment. Furthermore, theS8 promoting absorption mechanism of nanomicelles were investigated through in vivo pharmacokinetic experiments, parallel artificial membrane permeability assay (PAMPA), quadruple single-pass intestinal perfusion in rats, and Caco-2 cell monolayer model. Results: We demonstrated that the ASP VI could spontaneously form dynamic self-assembled structures with sodium taurocholate (NaTC) and dipalmitoyl phosphatidylcholine (DOPC) during gastrointestinal solubilization, which promoted the gastrointestinal absorption and permeability of ASP VI and increased its exposure in vivo, thus improving the biopharmacological characteristics of ASP VI. Moreover, ASP VI-NaTC-DOPC-self-assembled nanostructures (ASP VI-NaTC-DOPC-SAN) manifested higher cellular uptake in Caco-2 cells as evidenced by flow cytometry and confocal microscopy, and this study also preliminarily revealed the mechanism of self-assembly formation of ASP VI with endogenous components NaTC and DOPC driven by electrostatic and hydrogen bonding interactions. Conclusion: This study provides evidence that the dynamic self-assembled phase transition may play a key role in improving the biopharmacological characteristics of insoluble or low permeability active ingredients during the gastrointestinal dissolution of Chinese medicines.


Assuntos
Absorção Intestinal , Humanos , Ratos , Animais , Células CACO-2 , Transporte Biológico , Disponibilidade Biológica
5.
Int J Nanomedicine ; 18: 6705-6724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026532

RESUMO

Purpose: Enhancing the dissolution, permeation and absorption of active components with low solubility and poor permeability is crucial for maximizing therapeutic efficacy and optimizing functionality. The objective of this study is to investigate the potential of natural polysaccharides as carriers to improve the biopharmaceutical properties of active components. Methods: In this study, we employed four representative flavonoids in Astragali Radix, namely Calycosin-7-O-ß-D-glucoside (CAG), Ononin (ON), Calycosin (CA) and Formononetin (FMN), as a demonstration to evaluate the potential of Astragalus polysaccharides (APS) as carriers to improve the biopharmaceutical properties, sush as solubility, permeability, and absorption in vivo. In addition, the microstructure of the flavonoids-APS complexes was characterized, and the interaction mechanism between APS and flavonoids was investigated using multispectral technique and molecular dynamics simulation. Results: The results showed that APS can self-assemble into aggregates with a porous structure and large surface area in aqueous solutions. These aggregates can be loaded with flavonoids through weak intermolecular interactions, such as hydrogen bonding, thereby improving their gastrointestinal stability, solubility, permeability and absorption in vivo. Conclusion: We discovered the self-assembly properties of APS and its potential as carriers. Compared with introducing external excipients, the utilization of natural polysaccharides in plants as carriers may have a unique advantage in enhancing dissolution, permeation and absorption.


Assuntos
Astrágalo , Produtos Biológicos , Medicamentos de Ervas Chinesas , Flavonoides/química , Astrágalo/química , Polissacarídeos/química , Medicamentos de Ervas Chinesas/química
6.
Sci Rep ; 13(1): 11221, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464026

RESUMO

Dinosaurs and mammals have coexisted for the last ~ 230 million years. Both groups arose during the Late Triassic and diversified throughout the Mesozoic and into the Cenozoic (the latter in the form of birds). Although they undoubtedly interacted in many ways, direct fossil evidence for their interaction is rare. Here we report a new fossil find from the Lujiatun Member of the Lower Cretaceous Yixian Formation of China, showing a gobiconodontid mammal and psittacosaurid dinosaur locked in mortal combat. We entertain various hypothesized explanations for this association, but the balance of the evidence suggests that it represents a predation attempt on the part of the smaller mammal, suddenly interrupted by, and preserved within, a lahar-type volcanic debris flow. Mesozoic mammals are usually depicted as having lived in the shadows of their larger dinosaurian contemporaries, but this new fossil convincingly demonstrates that mammals could pose a threat even to near fully-grown dinosaurs. The Yixian Formation-and the Chinese fossil Jehol Biota more broadly-have played a particularly important role in revealing the diversity of small-bodied dinosaurs and other fauna. We anticipate that the volcanically derived obrution deposits specific to the Lujiatun Member will likewise continue to yield evidence for biotic interactions otherwise unknown from the rest of the fossil record.


Assuntos
Dinossauros , Fósseis , Animais , Dinossauros/anatomia & histologia , Aves , Mamíferos , Comportamento Predatório , Evolução Biológica , Filogenia
7.
Analyst ; 148(14): 3306-3311, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37334554

RESUMO

Rapid on-site detection of copper(II) ions (Cu2+) with high sensitivity and selectivity is of great significance in the safety monitoring of drinking water and food. Colorimetric detection is a robust fast determination method with the main drawback of low sensitivity. Herein, we developed a colorimetric chemosensor based on a colored polymer product. Via a Cu-Fenton mechanism, 1-naphthylamine (α-NA) was oxidized by H2O2 and brownish-red poly(1-naphthylamine) (PNA) was produced. The obtained Cu2+ sensor showed a linear response from 0.05 µM to 7 µM, with a detection limit of 62 nM. Our findings expanded chromogenic reaction types for colorimetric detection.

8.
Nanoscale ; 15(25): 10651-10660, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37313605

RESUMO

Recently, in combination with seed-mediated growth, thiolated chiral molecule-guided growth has shown great promise in obtaining chiral plasmonic nanostructures. Previously, with the assistance of chiral cysteines (Cys), we realized helical growth of plasmonic shells on gold nanorod (AuNR) seeds dispersed in cetyltrimethylammonium bromide (CTAB) solution. Herein, we further studied the roles of non-chiral cationic surfactants in tuning the helical growth. Both the counter anion and the hydrocarbon chain length of the surfactants were found to affect the formation of helical shells greatly. In particular, we exhibited surfactant-modulated conversion of the chiral shell deposition mode between layer growth and island growth. By optimizing growth conditions, an obvious plasmonic circular dichroism (PCD) response could be achieved for the island helical shell. Our findings demonstrated promising potential of nanochemical synthesis in fabricating chiral plasmonic nanostructures with small structural sizes.


Assuntos
Nanoestruturas , Nanotubos , Ouro/química , Tensoativos , DNA/química , Nanotubos/química , Nanoestruturas/química
9.
Molecules ; 28(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299041

RESUMO

Nowadays, Mn4+-activated fluoride red phosphors with excellent luminescence properties have triggered tremendous attentions for enhancing the performance of white light-emitting diodes (WLEDs). Nonetheless, the poor moisture resistance of these phosphors impedes their commercialization. Herein, we proposed the dual strategies of "solid solution design" and "charge compensation" to design K2Nb1-xMoxF7 novel fluoride solid solution system, and synthesized the Mn4+-activated K2Nb1-xMoxF7 (0 ≤ x ≤ 0.15, x represents the mol % of Mo6+ in the initial solution) red phosphors via co-precipitation method. The doping of Mo6+ not only significantly improve the moisture resistance of the K2NbF7: Mn4+ phosphor without any passivation and surface coating, but also effectively enhance the luminescence properties and thermal stability. In particular, the obtained K2Nb1-xMoxF7: Mn4+ (x = 0.05) phosphor possesses the quantum yield of 47.22% and retains 69.95% of its initial emission intensity at 353 K. Notably, the normalized intensity of the red emission peak (627 nm) for the K2Nb1-xMoxF7: Mn4+ (x = 0.05) phosphor is 86.37% of its initial intensity after immersion for 1440 min, prominently higher than that of the K2NbF7: Mn4+ phosphor. Moreover, a high-performance WLED with high CRI of 88 and low CCT of 3979 K is fabricated by combining blue chip (InGaN), yellow phosphor (Y3Al5O12: Ce3+) and the K2Nb1-xMoxF7: Mn4+ (x = 0.05) red phosphor. Our findings convincingly demonstrate that the K2Nb1-xMoxF7: Mn4+ phosphors have a good practical application in WLEDs.


Assuntos
Fluoretos , Nióbio , Luminescência
10.
Small ; 19(33): e2301474, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086141

RESUMO

Solar-powered interfacial heating has emerged as a sustainable technology for hybrid applications with minimal carbon footprints. Aerogels, hydrogels, and sponges/foams are the main building blocks for state-of-the-art photothermal materials. However, these conventional three-dimensional (3D) structures and related fabrication technologies intrinsically fail to maximize important performance-enhancing strategies and this technology still faces several performance roadblocks. Herein, monolithic, self-standing, and durable aerogel matrices are developed based on composite photothermal inks and ink-extrusion 3D printing, delivering all-in-one interfacial steam generators (SGs). Rapid prototyping of multiscale hierarchical structures synergistically reduce the energy demand for evaporation, expand actual evaporation areas, generate massive environmental energy input, and improve mass flows. Under 1 sun, high water evaporation rates of 3.74 kg m-2 h-1 in calm air and 25.3 kg m-2 h-1 at a gentle breeze of 2 m s-1 are achieved, ranking among the best-performing solar-powered interfacial SGs. 3D-printed microchannels and hydrophobic modification deliver an icephobic surface of the aerogels, leading to self-propelled and rapid removal of ice droplets. This work shines light on rational fabrication of hierarchical photothermal materials, not merely breaking through the constraints of solar-powered interfacial evaporation and clean water production, but also discovering new functions for photothermal interfacial deicing.

11.
J Colloid Interface Sci ; 644: 10-18, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37088013

RESUMO

Recently, potassium-ion batteries (PIBs) have been considered as one of the most promising energy storage systems; however, the slow kinetics and large volume variation induced by the large radius of potassium ions (K+) during chemical reactions lead to inferior structural stability and weak electrochemical activity for most potassium storage anodes. Herein, a multilevel space confinement strategy is proposed for developing zinc-cobalt bimetallic selenide (ZnSe/Co0.85Se@NC@C@rGO) as high-efficient anodes for PIBs by in-situ carbonizing and subsequently selenizing the resorcinol-formaldehyde (RF)-coated zeolitic imidazolate framework-8/zeolitic imidazolate framework-67 (ZIF-8/ZIF-67) encapsulated into 2D graphene. The highly porous carbon microcubes derived from ZIF-8/ZIF-67 and carbon shell arising from RF provide rich channels for ion/electron transfer, present a rigid skeleton to ensure the structural stability, offer space for accommodating the volume change, and minimize the agglomeration of active material during the insertion/extraction of large-radius K+. In addition, the three-dimensional (3D) carbon network composed of graphene and RF-derived carbon-coated microcubes accelerates the electron/ion transfer rate and improves the electrochemical reaction kinetics of the material. As a result, the as-synthesized ZnSe/Co0.85Se@NC@C@rGO as the anode of PIBs possesses the excellent rate capability of 203.9 mA h g-1 at 5 A g-1 and brilliant long-term cycling performance of 234 mA h g-1 after 2,000 cycles at 2 A g-1. Ex-situ X-ray diffraction (Ex-situ XRD) diffraction reveals that the intercalation/de-intercalation of K+ proceeds through the conversion-alloying reaction. The proposed strategy based on the spatial confinement engineering is highly effective to construct high-performance anodes for PIBs.

12.
Vet Microbiol ; 280: 109725, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36996618

RESUMO

Foot-and-mouth disease (FMD) severely impacts cloven-hoofed live-stock production, leading to serious economic losses and international restriction on the trade of animals and animal products worldwide. MiRNAs serve key roles in viral immunity and regulation. However, the knowledge about miRNAs regulation in FMDV infection is still limited. In this study, we found that FMDV infection caused rapid cytopathic in PK-15 cell. To investigate the miRNAs' function in FMDV infection, we performed knockdown of endogenous Dgcr8 using its specific siRNA and found that interference of Dgcr8 inhibited cellular miRNA expression and increased FMDV production, including viral capsid proteins expression, viral genome copies and virus titer, suggesting that miRNAs play an important role in FMDV infection. To obtain a full perspective on miRNA expression profiling after FMDV infection, we performed miRNA sequencing and found that FMDV infection caused inhibition of miRNA expression in PK-15 cells. Together with the target prediction result, miR-34a and miR-361 were screened for further study. Function study showed that no matter plasmid or mimics-mediated overexpression of miR-34a and miR-361 both suppressed FMDV replication, while inhibition of endogenous miR-34a and miR-361 expression using specific inhibitors significantly increased FMDV replication. Further study showed that miR-34a and miR-361 stimulated IFN-ß promoter activity and activated interferon-stimulated response element (ISRE). In addition, ELISA test found that miR-361 and miR-34a increased secretion level of IFN-ß and IFN-γ, which may contribute to repression of FMDV replication. This study preliminary revealed that miR-361 and miR-34a inhibited FMDV proliferation via stimulating immune response.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , MicroRNAs , Animais , Vírus da Febre Aftosa/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Febre Aftosa/genética , Imunidade , Proliferação de Células , Replicação Viral
13.
Artigo em Inglês | MEDLINE | ID: mdl-36753048

RESUMO

Environmental humidity and thermal control are of primary importance for fighting global warming, growing energy consumption, and greenhouse gas emissions. Sorption-based atmospheric water harvesting is an emerging technology with great potential in clean water production and passive cooling applications. However, sorption-based humidity management and their hybrid applications are limited due to the lack of energywise designs of hygroscopic materials and devices. Herein, all polymeric 3D foams are developed and evaluated as hygroscopic and photothermal materials. The gas-foaming method generates closed-cell structures with interconnected hydrophilic networks and wrinkled surfaces, expanding hygroscopic, photothermal, and evaporating areas of the 3D foams. These unique advantages lead to efficient water vapor sorption in a wide broad relative humidity (RH) range of 50-90% and efficient water release in a wide solar intensity (0.4-1 sun) and temperature range (27-80 °C). The reversible moisture sorption/release in 50 adsorption/desorption cycles highlights the excellent durability of the 3D foams compared to conventional inorganic desiccants. The 3D foams disclose passive and efficient apparent temperature regulation in warm and humid environments. Moreover, the use of the 3D foams as loose fill for fruit preservation and packaging is demonstrated for the first time by taking the merit of the 3D foams' moisture-absorbing, quick-drying, cushioning, and thermal-insulating properties. This work presents an integrated design of polymeric desiccants and scaffolds, not merely delivering stable water adsorption/desorption but also discovering innovative hybrid applications in humidity management and protective packaging.

14.
Life (Basel) ; 13(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36836789

RESUMO

With the ability to survive under drought and chronic hunger, camels display a unique regulation characteristic of lipid metabolism. Fibroblast growth factor (FGF) 21 is a peptide hormone that regulates metabolic pathways, especially lipid metabolism, which was considered as a promising therapeutic target for metabolic diseases. To understand the FGF21 expression pattern and its potential relationship with lipid metabolism in camels, this study investigated the distribution and expression of FGF21, receptor FGFR1, and two lipid metabolism markers, leptin and hormone-sensitive lipase (HSL), using an immunohistochemistry (IHC) assay. The results showed that FGF21 was widely expressed in camel central nerve tissue and peripheral organs but absent in lung and gametogenic tissue, including the testis, epididymis, and ovary. In striated muscle, FGF21 is only present at the fiber junction. FGFR1 is expressed in almost all tissues and cells, indicating that all tissues are responsive to FGF21 and other FGF-mediated signals. Leptin and HSL are mainly located in metabolic and energy-consuming organs. In the CNS, leptin and HSL showed a similar expression pattern with FGFR1. In addition, leptin expression is extremely high in the bronchial epithelium, which may be due to its role in the immune responses of respiratory mucosa, in addition to fat stores and energy balance. This study found that FGF21 showed active expression in the nervous system of camels, which may be related to the adaptability of camels to arid environments and the specific regulation of lipid metabolism. This study showed a special FGF21-mediated fat conversion pattern in camels and provides a reference for developing a potential therapeutic method for fat metabolism disease.

15.
Nat Commun ; 14(1): 81, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604426

RESUMO

The development of circularly polarized luminescence (CPL)-active materials with both large luminescence dissymmetry factor (glum) and high emission efficiency continues to be a major challenge. Here, we present an approach to improve the overall CPL performance by integrating triplet-triplet annihilation-based photon upconversion (TTA-UC) with localized surface plasmon resonance. Dye-loaded chiral micelles possessing TTA-UC ability are designed and attached on the surface of achiral gold nanorods (AuNRs). The longitudinal and transversal resonance peaks of AuNRs overlap with the absorption and emission of dye-loaded chiral micelles, respectively. Typically, 43-fold amplification of glum value accompanied by 3-fold enhancement of upconversion are obtained simultaneously when Au@Ag nanorods are employed in the composites. More importantly, transient absorption spectra reveal a fast accumulation of spin-polarized triplet excitons in the composites. Therefore, the enhancement of chirality-induced spin polarization should be in charge of the amplification of glum value. Our design strategy suggests that combining plasmonic nanomaterials with chiral organic materials could aid in the development of chiroptical nanomaterials.

16.
iScience ; 25(12): 105635, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36483013

RESUMO

Sauropterygia is the most diversified and dominant clade among marine reptiles, but their early evolution is scarcely understood. Here we report the earliest known complete specimen related to sauropterygians from the Early Triassic. It is referred to Hanosaurus hupehensis by an exclusive combination of features and shows mosaic morphology integrating the characters of multiple sauropterygian sub-lineages. In phylogenetic results from both parsimony and Bayesian analyses employing our reconstructed dataset, Hanosaurus is stably resolved as the basal-most member of Sauropterygiformes, a clade comprising all sauropterygians and saurosphargids. This skeleton reveals an unexpected ancestral body plan for sauropterygiforms with an elongate trunk and four short limbs, differing from many of its immediate descendants but more similar to non-sauropterygiform marine reptiles at their early aquatic stage as axial swimmers. After this convergence on body plan, we quantitatively confirm the rapid divergence of sauropterygiform reptiles following the end-Permian mass extinction.

17.
Biosensors (Basel) ; 12(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354466

RESUMO

As chiral antennas, plasmonic nanoparticles (NPs) can enhance chiral responses of chiral materials by forming hybrid structures and improving their own chirality preference as well. Chirality-dependent properties of plasmonic NPs broaden application potentials of chiral nanostructures in the biomedical field. Herein, we review the wet-chemical synthesis and self-assembly fabrication of gold-NP-based chiral nanostructures. Discrete chiral NPs are mainly obtained via the seed-mediated growth of achiral gold NPs under the guide of chiral molecules during growth. Irradiation with chiral light during growth is demonstrated to be a promising method for chirality control. Chiral assemblies are fabricated via the bottom-up assembly of achiral gold NPs using chiral linkers or guided by chiral templates, which exhibit large chiroplasmonic activities. In describing recent advances, emphasis is placed on the design and synthesis of chiral nanostructures with the tuning and amplification of plasmonic circular dichroism responses. In addition, the review discusses the most recent or even emerging trends in biomedical fields from biosensing and imaging to disease diagnosis and therapy.


Assuntos
Nanopartículas , Nanoestruturas , Ouro/química , Nanoestruturas/química , Dicroísmo Circular , Nanopartículas/química , Estereoisomerismo
18.
Vet Sci ; 9(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36423079

RESUMO

Mycoplasmas bovis (M. bovis) is an important pathogen that causes a variety of diseases, such as bovine respiratory diseases and causes significant losses to the national cattle industry every year, seriously affecting the development of the cattle industry worldwide. The pathogenic mechanism of M. bovis infection is still unknown, which leads to the lack of timely diagnosis and treatment. In this study, embryonic bovine lung (EBL) cells, infected with M. bovis were collected for gene profiling and detection of marker genes in the mTOR signaling pathway. The result showed that M. bovis infection significantly inhibits EBL growth in a dose-dependent manner. The transcription profiling data uncovered that M. bovis infection repressed a series of gene expressions in EBL cells, which are mainly related to metabolic process and immune response. Notably, many marker genes in the PI3K-Akt-mTOR pathway showed down-regulation after M. bovis infection. Further evidence showed that M. bovis infection inhibits expression of mTOR signaling pathway marker genes in EBL cells, which are time dependent. To further understand the M. bovis-induced inhibitory effect of mTOR signaling pathway, this study employed FBS as a supplement for exogenous nutrients and found that addition of a high concentration of FBS can rescue M. bovis-induced cell damage. In addition, a high concentration of FBS can rescue down-regulated mTOR signaling, including increasing transcriptional expression and protein phosphorylation level of mTOR pathway marker genes. This study demonstrated that M. bovis infection leads to inhibition of the nutrient metabolic pathway mTOR in a time-dependent manner, which would be helpful to further understand M. bovis infection mechanism and develop a new efficient anti-mycoplasma strategy targeting mTOR signaling.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36305787

RESUMO

Solar-powered interfacial evaporation has emerged as an innovative and sustainable technology for clean water production. However, the rapid, mass and shape-controlled fabrication of three-dimensional (3D) steam generators (SGs) for versatile hybrid applications remains challenging. Herein, composite aerogel beads with self-contained properties (i.e., hydrophilic, porous, photothermal, and durable) are developed and demonstrated for threefold hybrid applications including efficient solar-powered interfacial evaporation, water remediation, and controlled soil enrichment. The rational incorporation of selected polysaccharides enables us to fabricate bead-like aerogels with rapid gelation, continuous processing, and enhanced ion adsorption. The composite beads can attain a high water evaporation rate of 1.62 kg m-2 h-1 under 1 sun. Meanwhile, high phosphate adsorption capacity of over 120 mg g-1 is achieved in broad pH (2.5-12.4) and concentration (200-1000 mg L-1) ranges of phosphate solutions. Gratifyingly, we demonstrate the first example of recycling biomaterials from interfacial SGs for controlled nutrient release, soil enrichment, and sustainable agriculture. The phosphate-saturated beads can be gradually broken down in the soil. Macronutrients (N, P, and K) can be slowly released in 50 days, sustaining the plant germination and growth in a whole growth stage. This work shines light on the mass and controlled fabrication of aerogel beads based on double-network biopolymers, not merely scaling up solar-powered interfacial evaporation but also considering water remediation, waste material disposal, and value-added conversion.

20.
PLoS One ; 17(9): e0275157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36166418

RESUMO

Indoor air pollution is complex and serious. In fact, an on-site investigation of an office building revealed that the concentration of three typical pollutants (CO2, VOCs, PM2.5) exceeded the Chinese standard. To identify a better control method to achieve good indoor air quality, an orthogonal experiment was carried out in an environmental chamber to compare the control time and energy consumption of four control methods (purifier+ and window+, purifier+ and window-, purified fresh air 240 m3/h and purified fresh air 400 m3/h) to meet the standard established for pollutants. The purifier+ and window+ method was found to be more effective in most conditions, with a control time reduced by 8.06% and energy consumption reduced by 11.91% compared with the traditional control method of purified fresh air 240 m3/h. This research highlights the optimal control strategy for the air quality in office buildings under different pollution conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Dióxido de Carbono , Monitoramento Ambiental/métodos , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...